Ocean 180 Video Challenge

The Ocean 180 video challenge is to create a video abstract, which is a short (180 second) piece summarizing the results of a recently-published, peer-reviewed study on any ocean-science related topic.  Justin Ridge entered and chose a recent GRL paper on sea-level anomalies and beach erosion as the topic.  Who better to star in the video than the author of the paper, Ethan Theuerkauf?  The target audience is middle school students.  Justin did a great job, but unfortunately didn’t progress to the next round.  Take a look at his video, then watch the Ocean 180 Video Challenge finalists.  Justin’s going to try again next year and focus on a different topic, possibly some of his work on oyster reefs.

Posted in Uncategorized | Leave a comment

Justin Ridge wins Walter B. Jones Award

Justin RidgeJustin Ridge found out last week that he is one of six winners, nation wide, for excellence in coastal and marine graduate study.  “Justin Ridge, a Ph.D. student at the University of North Carolina at Chapel Hill, is using innovative techniques to assist in restoration efforts of oyster reef communities. He also co-founded a unique educational program for K-12 teachers, where fellow students and faculty share their research with the teachers, who in turn, bring that information into their classrooms.”  Check out information on all of the winners at the NOAA website, and more information on North Carolina winners at NC Sea Grant.  We are all very proud of Justin at UNC-IMS!  Keep up the good work.

Posted in Uncategorized | Leave a comment

Why collect cores from a beach?

DCIM100GOPRO

Collecting a vibracore from Onslow Beach, NC.

There are many reasons to collect cores from a beach.  One of the most interesting is to look back in time and see what environments used to be where the beach is today.  The core is like a time machine, or better yet, a history book.  You just have to learn the language geology.  The cores we took today tell us that there used to be a saltmarsh where the beach is, because below the beach sand we sampled old marsh plants.   Before the saltmarsh, an estuary occupied the area because we sampled gray mud with an oyster reef below the marsh sediment.  This stacking pattern of different environments is evidence that sea level has been rising in the area of Onslow Beach, NC.  Earth’s history is beneath our feet and collecting cores is one way of exposing it.

Posted in Uncategorized | Tagged , , , , | Leave a comment

The shoreface at Onslow Beach

Justin, Tony and Matt ready to get into the water at Onslow Beach

Justin, Tony and Matt ready to get into the water at Onslow Beach.

The southwestern half of Onslow Beach, NC is starved of sand.  Using a side-scan sonar, we imaged peat and organic-rich sediment at the seafloor just seaward from where the waves start to break.  Offshore from that, Miocene rock is imaged at the seafloor.  It is difficult, at least for us, to get a true sense of what the seafloor looks like from these geophysical data (scale, rock type, relief, etc.).  To gain perspective, we decided to SCUBA dive and collect a video of the seafloor from the shoreline to about 300 m offshore.  Visibility nearshore was very low because that organic-rich mud was eroding and being suspended in the water column.  Once we reached about 200 m from shore, visibility improved and we could clearly see rock outcropping at the seafloor (Belgrade Formation).  That rock is shown in the video below, taken at a depth of about 7 m (23 feet).

Posted in Uncategorized | Leave a comment

Sea-level anomalies affect beach erosion, but nobody has ever heard of them.

Onslow_Beach_anomaly

Onslow Beach, NC during a sea-level anomaly in 2009.

Sea-level anomalies are periods greater than 2 weeks when the water level at the beach is high.  They are not necessarily related to storm surge or sea-level rise, rather they are forced by changes in ocean currents.  On the US East Coast, slowing of the Gulf Stream or meteorological phenomena, like northeasterly winds or pressure changes, can pile water up against the shore and cause a sea-level anomaly.  They impact large stretches of coastline (e.g. Massachusetts to Florida) and occur every year, but some years they are more frequent.  Ethan Theuerkauf recently published a paper in Geophysical Research Letters that presents the first direct measures of the effects of sea-level anomalies on beaches.  He shows that a year with frequent sea-level anomalies can cause as much beach erosion as a year with a hurricane.  Compare Onslow Beach, NC during a sea-level anomaly, above, with Hurricane Arthur (July 3, 2014), below.  The hurricane made landfall at night, but you can still make out overwash (the camera is pointed landward across a washover fan).

Posted in Uncategorized | Tagged , , , , | Leave a comment

Restore the IMS shore: Part III

We completed the restoration project after constructing reefs with 3,500 bushels of shell and planting 2,000 bundles of  marsh grass.  It took 2.5 days with 15 people working, including students, technicians, summer researchers, and faculty.

restoration_complete

I’m really pleased with the end product.  Now it’s a waiting game to see if oysters will settle on the cultch and the marsh plants will take hold.  It is basically out of our hands now.  In a few weeks we will revisit the site and survey the reefs and shoreline.  Those data will served as a baseline from which to measure reef growth from.  Emily Woodward collected the time-lapse video of reef construction (shown here), using a GoPro camera.

Posted in Uncategorized | Tagged , , , , | Leave a comment

Restore the IMS shore: Part II

The project involves planting a saltmarsh and an oyster reef.  The first step was applying for a CAMA permit because we need to distribute oyster-shell cultch near the shoreline.  CAMA_permitWe anticipate that oyster larvae will settle on the shell and a reef will be created by the end of the summer.  We need a reef in the nearshore because IMS is adjacent to the Intracoastal Waterway and the reef should protect the saltmarsh from boat wakes.  The CAMA permit required us to jump through many hoops and as I write this it is still not signed (hopefully in a few hours).  The new reef and saltmarsh should promote expansion of the adjacent seagrass meadow, provide important fish habitat, clean the water, and sequester carbon.  Below, is a figure showing our final design.

IMS_restoration_plan

 

Posted in Uncategorized | Leave a comment

Restore the IMS shore: Part I

Why does the IMS shoreline need to be restored?  Because…

1) It currently looks like this:

IMS_shoreline_before

 

2) We are supposed to be stewards of the coast and we are not setting a good example with our rip-rap revetment.

IMS_revetment3) To improve fish habitat and sequester carbon.  The project is funded by the University of North Carolina at Chapel Hill Energy Services Department.  UNC has pledged to reach carbon neutrality by mid-century.  They will take credit for carbon offsets associated with the saltmarsh and oyster reefs we are planting.  This is another example of IMS faculty working together.  The effort is led by the Rodriguez, Fodrie, and Piehler labs.  Stay tuned for project updates.

Posted in Uncategorized | Leave a comment

Oyster reefs have the potential to grow 11 cm/yr…that’s rapid!

Oyster-reef core

A core through a reef constructed in 1997

Inter-tidal reefs grow so quickly, they should be able to keep up with any future rate of sea-level rise.  That’s good news because in the lower parts of estuaries oyster reefs need to maintain an intertidal elevation to thrive and the areal extent of oyster reefs is only a fraction of what it used to be before over harvesting.  That rapid rate of growth is not sustainable because if it were it wouldn’t take long for a reef to be high and dry and oysters must be underwater at least half of the time.  As you might expect, different parts of the reef grow at different rates.  We have a new paper published in Nature Climate Change that presents the first reef-scale measures of growth.  Our work shows that oyster-reef restoration has a high probability of success in inter-tidal areas.  If inter-tidal reefs are restored close to marsh shorelines one could end up with a reef that will help protect the shoreline from erosion, filter water, provide fish habitat, and be able to keep up with sea-level rise.  No rock sill can do those things.

My favorite part about the study is that it’s interdisciplinary (interface between ecology and geology) .  There are lots of coauthors and I know the study would not have been completed without everyone’s contributions.  If you keep visiting my site, in the future you will see more interdisciplinary oyster- reef studies, like their roll in the carbon and nitrogen cycles, comparing growth over multiple time scales, and quantifying the relationship between aerial exposure and growth rate.

We measured reef growth from high-resolution digital elevation models.

We measured reef growth from high-resolution digital elevation models.

Reefs were constructed as 3 x 5 x 0.15 m boxes.

Reefs were constructed as 3 x 5 x 0.15 m boxes.

Posted in Uncategorized | Leave a comment

Beware: measuring beach erosion with 2-D profiles can yield spurious results

ethan_guitar

Why is Ethan so happy?  Well, he just published a new paper in Earth Surface Processes and Landforms entitled, “Evaluating proxies for estimating subaerial beach volume change across increasing time scales and various morphologies“.  In the paper, Ethan critically evaluates proxies, such as changes in beach profiles and shoreline positions, which are commonly used in management and research for estimating changes in subaerial beach volume.  He used terrestrial laser scanning data to create multiple high-resolution topography maps of beaches with variable morphology over a period of 3.5 years.  Those maps were then used to compare the various volume-change proxies.  This work is important because management decisions and research results may be adversely influenced by inaccurate depictions of beach volume change that were based on a proxy that is not well suited to that particular beach morphology or time frame of interest.  Check out his paper online and don’t forget to look at supplemental information where all of the maps are displayed.ESPL

Posted in Uncategorized | Leave a comment