Restore the IMS shore: Part II

The project involves planting a saltmarsh and an oyster reef.  The first step was applying for a CAMA permit because we need to distribute oyster-shell cultch near the shoreline.  CAMA_permitWe anticipate that oyster larvae will settle on the shell and a reef will be created by the end of the summer.  We need a reef in the nearshore because IMS is adjacent to the Intracoastal Waterway and the reef should protect the saltmarsh from boat wakes.  The CAMA permit required us to jump through many hoops and as I write this it is still not signed (hopefully in a few hours).  The new reef and saltmarsh should promote expansion of the adjacent seagrass meadow, provide important fish habitat, clean the water, and sequester carbon.  Below, is a figure showing our final design.

IMS_restoration_plan

 

Posted in Uncategorized | Leave a comment

Restore the IMS shore: Part I

Why does the IMS shoreline need to be restored?  Because…

1) It currently looks like this:

IMS_shoreline_before

 

2) We are supposed to be stewards of the coast and we are not setting a good example with our rip-rap revetment.

IMS_revetment3) To improve fish habitat and sequester carbon.  The project is funded by the University of North Carolina at Chapel Hill Energy Services Department.  UNC has pledged to reach carbon neutrality by mid-century.  They will take credit for carbon offsets associated with the saltmarsh and oyster reefs we are planting.  This is another example of IMS faculty working together.  The effort is led by the Rodriguez, Fodrie, and Piehler labs.  Stay tuned for project updates.

Posted in Uncategorized | Leave a comment

Oyster reefs have the potential to grow 11 cm/yr…that’s rapid!

Oyster-reef core

A core through a reef constructed in 1997

Inter-tidal reefs grow so quickly, they should be able to keep up with any future rate of sea-level rise.  That’s good news because in the lower parts of estuaries oyster reefs need to maintain an intertidal elevation to thrive and the areal extent of oyster reefs is only a fraction of what it used to be before over harvesting.  That rapid rate of growth is not sustainable because if it were it wouldn’t take long for a reef to be high and dry and oysters must be underwater at least half of the time.  As you might expect, different parts of the reef grow at different rates.  We have a new paper published in Nature Climate Change that presents the first reef-scale measures of growth.  Our work shows that oyster-reef restoration has a high probability of success in inter-tidal areas.  If inter-tidal reefs are restored close to marsh shorelines one could end up with a reef that will help protect the shoreline from erosion, filter water, provide fish habitat, and be able to keep up with sea-level rise.  No rock sill can do those things.

My favorite part about the study is that it’s interdisciplinary (interface between ecology and geology) .  There are lots of coauthors and I know the study would not have been completed without everyone’s contributions.  If you keep visiting my site, in the future you will see more interdisciplinary oyster- reef studies, like their roll in the carbon and nitrogen cycles, comparing growth over multiple time scales, and quantifying the relationship between aerial exposure and growth rate.

We measured reef growth from high-resolution digital elevation models.

We measured reef growth from high-resolution digital elevation models.

Reefs were constructed as 3 x 5 x 0.15 m boxes.

Reefs were constructed as 3 x 5 x 0.15 m boxes.

Posted in Uncategorized | Leave a comment

Beware: measuring beach erosion with 2-D profiles can yield spurious results

ethan_guitar

Why is Ethan so happy?  Well, he just published a new paper in Earth Surface Processes and Landforms entitled, “Evaluating proxies for estimating subaerial beach volume change across increasing time scales and various morphologies“.  In the paper, Ethan critically evaluates proxies, such as changes in beach profiles and shoreline positions, which are commonly used in management and research for estimating changes in subaerial beach volume.  He used terrestrial laser scanning data to create multiple high-resolution topography maps of beaches with variable morphology over a period of 3.5 years.  Those maps were then used to compare the various volume-change proxies.  This work is important because management decisions and research results may be adversely influenced by inaccurate depictions of beach volume change that were based on a proxy that is not well suited to that particular beach morphology or time frame of interest.  Check out his paper online and don’t forget to look at supplemental information where all of the maps are displayed.ESPL

Posted in Uncategorized | Leave a comment

Using a Quadcopter/GoPro combo to measure morphologic change from above

In the past we have relied on aerial photography when measuring the morphology of unnamed-3washover fans. These fans are constantly changing shape, but we aren’t able to document these changes because images taken from a plane are only collected every couple of years. To remedy the problem, we’ve attached a GoPro to a remote-controlled quadcopter that we use to fly over the fans. With this technology, we’ve managed to capture some awesome, high-quality aerial images of the fan.

The benefit of using the quadcopter is not only limited to measuring washover fans – we’ve also started flying over man-made oyster reefs in Middle Marsh, NC. The images and videos taken with the GoPro will help us assess the growth of the reefs.
[vimeo]https://vimeo.com/89644452[/vimeo]

Posted in Uncategorized | Leave a comment

Where do coastlines stabilize following rapid retreat?

Roanoke Bayhead DeltaBayhead deltas are located where rivers flow into estuaries.  They have broad low-elevation plains that are sensitive to small increases in the rate of sea-level rise.  In the past, when sea level was rising at a rate of 1 m per 100 years, bayhead deltas across the Northern Gulf of Mexico experienced a phase of rapid landward retreat.  Subsequently, those bayhead deltas  stabilized and Alex Simms (UC Santa Barbara) and I are interested in better understanding controls on bay-head delta stabilization following rapid retreat.  We recently published a paper in Geophysical Research Letters  that shows bayhead deltas stabilize at tributary junctions as they are moving landward in response to sea-level rise.  These results highlight the shortcomings of models that predict the impacts of sea-level rise by simply flooding topography (i.e. bathtub or passive-inundation models).  One of those passive-inundation models is being served by NOAA.  Play with the NOAA model online and then read our paper.

Posted in Uncategorized | Leave a comment

Inspiring students work with teachers

EOSEthan and Justin created SciREN, the Scientific Research and Education Network, to establish a forum through which scientists can efficiently provide teachers scientific resources for the classroom.  The first event was held at the Pine Knoll Shores Aquarium in April 2013.  To get the word out and inspire others to host SciREN events at different venues across the country, Ethan and Justin wrote an article for EOS, Transactions of the American Geophysical Union, which was published on Feb 4.  Check it out and remember, it’s not enough to publish results in scientific journals; new concepts need to be disseminated to the entire community, including K-12.Justin and Ethan on stage

Posted in Uncategorized | Leave a comment

Floodplain sediment storage

Jenny_roanokeAnna_square

Anna Jalowska has been monitoring sediment storage on the Roanoke River floodplain for about three years.  She has deployed feldspar marker beds and water-level loggers from the mouth of the river near Albemarle Sound to about 15 km up river on the floodplain.  Her results show that floodplain sedimentation is dynamic.  Some months she measures one or two centimeters of deposition, while other months that same amount of sediment has been eroded.  During this trip in November, Anna’s primary adviser, Brent McKee, sampled about 1 meter of mud from the thalweg of the Roanoke River.  The river channel itself could be an important temporary-storage site for sediment.  Sediment-transport routes to basins are not direct; there are many layovers and at each stop the sediment is slightly altered.

Posted in Uncategorized | Leave a comment

Justin Ridge selected for NCSG and NCCR’s coastal research fellowship

Captain Ridge

Justin Ridge just learned that he was awarded a North Carolina Sea Grant and N.C. Coastal Reserve’s Coastal Research Fellowship for his proposal entitled: LANDSCAPE CONNECTIVITY INFLUENCES GROWTH AND ACCRETION IN TEMPERATE BIOGENIC REEFS AND ADJACENT SALT MARSHES.  The fellowship is designed to foster research within the North Carolina Coastal Reserve system.  He is one of two recipients to receive up to $10,000 of funding to be spent in the 2014 calendar year.  His research will take place in the Rachel Carson National Estuarine Research Reserve.  Congratulations, Justin!  By the way, if you are interested in helping Justin with the project, he is looking for an undergraduate student or recent graduate to work on the project with him this summer at IMS.  Contact Justin if you are interested.

Posted in Uncategorized | Leave a comment

Teacher workshop focused on intertidal habitats

We are taking applications from middle and high school science teachers to participate in a workshop at IMS in the Spring of 2014.  The goal is to create lesson plans using data-rich movies of intertidal habitats with emphasis on fish utilization.  We are still working on the first cut of the movies, but they will be ready by the time of the workshop.  Please pass the word around and visit the website for more information by clicking on the image below.fishy

Posted in Uncategorized | Leave a comment